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Abstract

A late time asymptotic perturbative analysis of curvature coupled com-

plex scalar field models with accelerated cosmological expansion is carried

out on the level of formal power series expansions. For this, algebraic ana-

logues of the Einstein scalar field equations in Gaussian coordinates for

space-time dimensions greater than two are postulated and formal solu-

tions are constructed inductively and shown to be unique. The results

obtained this way are found to be consistent with already known facts

on the asymptotics of such models. In addition, the algebraic expansions

are used to provide a prospect of the large time behaviour that might be

expected of the considered models.

1 Introduction

A common and also remarkably consistent interpretation of current observa-
tional data on type Ia supernovae distances, cosmic microwave background
anisotropies and large scale structure surveys is that the universe is of spatially
flat Friedmann Robertson Walker type and is currently undergoing accelerated
expansion. However, the supposition of such a model opens a gap between the
predicted total energy density required by a flat space, the critical density, and
the sum of observed baryonic and dark matter density. An unknown, smooth
component of matter with negative pressure, dubbed dark energy, is usually in-
troduced to fill this gap of about two thirds of the critical density. For a recent
review on dark matter and dark energy see e.g. [26]. It is noteworthy that
there are also attempts to avert the need of dark energy at all, for instance by
assuming Van der Waals type [9] or viscous [10] instead of perfect matter fluids.

Trying to fathom the nature of dark energy, myriads of models have been
brought up for it, from the simplest, as just a positive cosmological constant [25]
yielding an equation of state parameter w = −1, to far richer, dynamical ones,
where w can vary in time. Many of these models make use of various scalar
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fields to describe dark energy, although there are not less successful approaches
like the generalized Chaplygin gas [16] which consider fluids that are to obey
specific nonlinear equations of state. Models with real scalar fields minimally
coupled to the Ricci curvature and propagating in different (non-negative) po-
tentials, as proposed in [20], are known as quintessence [6], and cause w lying
in the “ordinary” range between minus one and one. If the kinetic energy of
such a field is sufficiently small compared with the potential energy, w will be
less than −1/3, so driving the acceleration of the universe [22, 24]. An interest-
ing generalization of this is spintessence [5], where the scalar field is assumed
to be complex [14] or even to possess an internal O(N) symmetry [19]. The
restrictions on quintessence can be relaxed in other ways by allowing arbitrary
coupling to the scalar curvature [12], to the matter fluid [1], or, instead of a
potential, introducing non-standard kinetic terms [2]. The latter is known as
k-essence. Doing so enables w to take values below −1, a case which has been
discussed under the term phantom energy [7]. Phantom cosmologies are capable
of exhibiting a certain type of future singularity [7, 28], the so called big rip [8],
where the scale factor diverges in finite time.

A way of getting information about the late time asymptotics of cosmological
models is to consider formal power series expansions of their solutions as sug-
gested by Starobinsky in [27] and worked out in full detail by Rendall [21] for the
vacuum case. Recently, for example, Heinzle and Rendall [15] calculated formal
asymptotic expansions for quintessence in an exponential potential, whereas in
[3] and [13] formal series were used to investigate the big rip singularity due to
a phantom scalar field and phantom barytropic perfect fluid respectively. The
method presented in [21] encompasses two parts, a first algebraic one, in which
the Einstein equations are used to obtain algebraic equations for the series’ co-
efficients that are then solved inductively, and a second analytic one, where it is
shown that those formal series indeed approximate the cosmological solution to
arbitrary high order for large times. Rendall [21] did also carry out the algebraic
part for perfect fluids with linear equation of state, more specifically for con-
stant non-negative w less than one. It is the aim of the present paper to do such
a perturbative analysis for curvature coupled complex scalar fields. For this,
section 2 recapitulates the Einstein scalar field equations in n+1 decomposition
with respect to a Gaussian coordinate system. In section 3 the formal series are
defined as elements of the algebra of generalized finite formal Laurent series over
a suitable ring. Section 4 then gives partial and covariant derivatives as well
as (matrix) inverses of such series a precise meaning and postulates algebraic
analogues of the Einstein and scalar field equations obtained before. Finally, in
section 5, existence and uniqueness of solutions to this algebraic equations are
shown.

2 Motivation of the equations

In the algebraic treatment of scalar field models in the sections following, a
set of equations for formal series will be postulated. These equations shall be
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motivated here as originating from a n + 1 decomposition of the dynamics in
Gaussian coordinates. For this, let g̃ be a Lorentzian metric on M̃ := M × I,
where M is a smooth manifold of dimension n ≥ 2 and I an open non-empty
interval within the real numbers R, such that the n + 1 decomposition has unit
lapse and vanishing shift, i.e.

g̃|U × I = gabdxa ⊗ dxb − dt ⊗ dt

for every chart1 (U, x) of M , where t denotes the natural projection on I and
g(·, t0) is the Riemannian metric induced by g̃ on the hypersurface t = t0 ∈ I.
Then the Einstein equation G̃ = T on M̃ is equivalent to a system consisting of
an evolution equation

∂tk
a
b = Ra

b + (tr k)ka
b − Sa

b +
tr S − ρ

n − 1
δa

b (1)

as well as both an energy and a momentum constraint equation

R − kijk
ij + (tr k)2 = 2ρ (2)

∇ik
i
a −∇atr k = ja. (3)

Here, kab is the scalar second fundamental form of the t-hypersurfaces in M̃ ,
which satisfies

∂tgab = −2kab, (4)

whereas Rab and R are the Ricci tensor and scalar curvature of g. Moreover,
the following projections of the energy momentum tensor T µν with respect to
the t-hypersurfaces were used [21]:

Sab := T ab; ja := T an; ρ := T nn. (5)

Latin indices shall indicate spatial components and run from 0 to n−1, whereas
Greek indices may cover the entire range, from 0 to n.

If φ is a complex scalar field on M̃ coupled to the scalar curvature R̃ with
strength ξ ∈ R and propagating in a smooth real potential V , then it fulfills the
wave equation

�φ − ξR̃φ − 2φV ′(φ∗φ) = 0 (6)

and its energy momentum tensor is given by2

Tµν =
1

2

[

(1 − 2ξ)∇̃µφ∗∇̃νφ +

(

2ξ − 1

2

)

gµν∇̃αφ∗∇̃αφ − 2ξφ∗∇̃µ∇̃νφ

+ 2ξgµνφ∗∇̃α∇̃αφ + ξG̃µνφ∗φ − gµνV (φ∗φ) + c.c.

]

. (7)

The abbreviations � for the covariant Laplacian ∆̃ = ∇̃α∇̃α of M̃ as well as
c.c. for the complex conjugate of all the preceding terms were used. Note that

1Compositions with the natural projection U × I → U are not written out explicitly.
2A recent and well-referenced discussion on non-minimal coupling can be found in [11].
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in contrast to real scalar fields, where the potential term is usually written as
V (φ), it is here defined to be V (φ∗φ) for having V a function of a real variable.
The explicit occurrence of the Einstein tensor in (7) can be circumvented by
assuming 1 − ξφ∗φ > 0 and introducing an effective energy momentum tensor
[4]

T :=
T − ξG̃φ∗φ

1 − ξφ∗φ
. (8)

The wave equation (6) is satisfied if and only if

∆φ + (tr k)∂tφ − ∂2
t φ − ξR̃φ − 2φV ′(φ∗φ) = 0 (9)

holds on M̃ , where the ambient scalar curvature R̃ can be written as

R̃ = R − 2∂ttr k + kijk
ij + (tr k)2. (10)

The Einstein equations are then equivalent to G̃ = T which in turn is valid
exactly if the (effective) evolution and constraint quantities [21]

Êa
b := ∂tσ

a
b −

[

R̂a
b + (tr k)σa

b − Ŝa
b

]

(11)

E := ∂ttr k −
[

R + (tr k)2 +
1

n − 1
trS − n

n − 1
ρ

]

(12)

C := R − kijk
ij + (tr k)2 − 2ρ (13)

Ca := ∇ik
i
a −∇atr k − ja (14)

all vanish identically. In this paper, a hat shall denote the tensor’s traceless
part and σ := k̂. The projections of the effective energy momentum tensor T

can be written out as

Sa
b =

1

2
(1 − ξφ∗φ)−1

[

(1 − 2ξ)∇aφ∗∇bφ − 2ξφ∗
[

∇a∇bφ + ka
b∂tφ

]

+

{(

2ξ − 1

2

)

[

∇iφ
∗∇iφ − ∂tφ

∗∂tφ
]

+ 2ξφ∗
[

∆φ

+ (tr k)∂tφ − ∂2
t φ

]

− V (φ∗φ)

}

δa
b + c.c.

]

(15)

ja =
1

2
(1 − ξφ∗φ)−1

[

− (1 − 2ξ)∇aφ∗∂tφ + 2ξφ∗
[

∂t∇aφ

− ka
i∇iφ

]

+ c.c.

]

(16)

ρ =
1

2
(1 − ξφ∗φ)−1

[

1

2
∂tφ

∗∂tφ −
(

2ξ − 1

2

)

∇iφ
∗∇iφ − 2ξφ∗

[

∆φ

+ (tr k)∂tφ
]

+ V (φ∗φ) + c.c.

]

. (17)
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Finally, two useful consistency conditions can be obtained by differentiating
the energy and momentum constraint quantities (13), (14) with respect to time

∂tC = 2(tr k)C − 2∇iCi − 2σi
jÊ

j
i + 2

(

1 − 1

n

)

(tr k)E

− 2
[

∂tρ + ∇ij
i − kijS

ij − (tr k)ρ
]

(18)

∂tCa = (tr k)Ca − 1

2
∇aC + ∇iÊ

i
a −

(

1 − 1

n

)

∇aE

− gai

[

∂tj
i + ∇jS

ij − 2ki
jj

j − (tr k)ji
]

(19)

and identifying the matter terms in square brackets above as the temporal and
spatial components of the covariant divergence of the effective energy momen-
tum tensor respectively.

3 Algebraic setup

To investigate the asymptotics of curvature coupled scalar field models alge-
braically, an ansatz for both the metric and the matter field in terms of formal
power series is made. Then, the Einstein scalar field equations (1), (2), (3) and
(9) provide relations on the coefficients of those series. An ansatz found to be
suitable is of the form

∑

m∈D

∑

s∈Sm

∑

l∈Lm,s

am,s,l(x)tle−(m+is)Ht,

where D belongs to a certain class of subsets of the reals given below and Sm

and Lm,s are finite sets of real and natural numbers respectively, this for m ∈ D
and every s ∈ Sm. Furthermore, H is a positive constant playing the role
of an asymptotic value of the Hubble parameter, and am,s,l(x) is a coefficient
independent of t. Non-vanishing terms with l 6= 0 will be called logarithmic,
such with s 6= 0 oscillatory.

In order to give the series above a precise meaning, it is now shown that they
can be taken as elements of a specific algebra providing the structure required.
For this, let R be a complex algebra3 and R〈〈X〉〉 the set of functions from
R to R whose support is discrete4 and bounded from below. Then this set
together with point-wise addition, point-wise exterior multiplication and the
Cauchy product forms the complex algebra of generalized finite formal Laurent
series in one variable X over R, where the supposition on the support of the
functions guarantees that the sums in the inner multiplication are all finite and
therefore well-defined. Note that for complex κ ∈ C and f, g ∈ R〈〈X〉〉 the
support of κf is a subset of the support of f , that of f + g is a subset of the
union of the supports of f and g, whereas the support of the product fg lies
within the point-wise sum of the supports of f and g. As usual, Xα denotes the

3Throughout this paper, an algebra is considered associative, commutative and unitary.
4A subset A of a topological space X is called discrete iff A has no limit points in X.
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map for which Xα(m) = 1R, the identity in R, for m = α and zero otherwise.
By virtue of the identity 1R〈〈X〉〉 = X0 in R〈〈X〉〉 the algebra R is identified with
the subalgebra R1R〈〈X〉〉 in R〈〈X〉〉. In addition, a function taking values in R
defined on a subset of R is always identified with its trivial extension, where
zero is assigned to points outside the function’s domain. It will be useful to say
a f ∈ R〈〈X〉〉 being of order not less than α, written f = O(Xα), iff α ≤ supp f ,
being of order greater than α, written f = o(Xα), iff α < supp f , i.e. non-zero
coefficients occur not before or even after α ∈ R respectively.

There are three subalgebras of R〈〈X〉〉 which will be used further on. Firstly,
the polynomials R[X ] over R encompassing exactly those series supported on a
finite subset in the natural numbers, secondly, the power series R[[X ]] over R,
obtained by allowing series supported on any set of naturals, and thirdly, the
generalized polynomials R〈X〉 over R, whose support is a finite subset in the
real numbers. With this, and by noting that the set of smooth complex valued
functions C∞(M, C) on the n-manifold M possesses the structure of a complex
algebra, it is possible to define an algebra L := C∞(M, C)[Z]〈Y 〉〈〈X〉〉 over C

in three variables X , Y and Z successively, i.e. L = ((C∞(M, C)[Z])〈Y 〉)〈〈X〉〉.
The identification of these variables with distinct elements of L follows from
the outline in the previous paragraph. An element of the algebra L can be
regarded as a series of the form (3) when the variable X plays the role of the
exponential factor e−Ht, Y that of the oscillatory factor e−iHt and Z that of
the logarithmic factor t. The coefficients are smooth complex functions on M .
It is worth remarking that this definition of the formal series is totally intrinsic
to M , the appearance of t in (3) is merely symbolic and intended to suggest
arithmetic rules rather than being a reference to the ambient manifold M̃ . To
have the setup complete, let Su denote the subalgebra of exactly those elements
of L, which are of order not less than zero and have neither oscillatory nor
logarithmic terms occurring before u ∈ R. Using the above identifications, the
absence of those terms can also be expressed as the restriction of the series to
the open interval ]−∞, u[ lying in C∞(M, C)〈〈X〉〉.

4 Algebraic Einstein scalar field equations

After these preparations, it is possible to postulate Einstein and scalar field
equations in terms of formal series. For a f ∈ L, formal spatial derivatives
shall be defined to act point-wise, (∂af)m,s,l := ∂a(f)m,s,l, and the formal time
derivative according to (∂tf)m,s,l := −(m + is)H(f)m,s,l + (l + 1)(f)m,s,l+1,
m, s, l ∈ R. This imitates the effect the partial derivatives would have when
applied term-wise to an ansatz of the form (3). Here, the notation (f)m,s,l for
f(m)(s)(l) ∈ C∞(M, C) is used. Those formal derivatives are derivations on the
algebra L commuting pairwise and leaving the subalgebras Su, u ∈ R, invariant.
To have a notion of reality for formal series, define complex conjugation as a
ring homomorphism f 7→ f∗ by (f∗)m,s,l := (f)∗m,−s,l for all m, s, l ∈ R and say
that f is real iff f∗ = f .

Fix a chart on M which, for the sake of simplicity, may be global and let
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(gab) be a real symmetric family in SuX−v for some u > 0 and v ∈ R with
(gab)−v,0,0 (the components of) a Riemannian metric. It can be shown that there
exists exactly one real symmetric family (gab) in SuXv with gaig

ib = δ b
a and

gaigib = δa
b. Thus, together with the formal partial derivatives above, algebraic

equivalents for the components of the Levi-Civita connection, the Ricci tensor
and hence for covariant derivatives and scalar curvature of M can be obtained
by setting

Γc
ab =

1

2
gic(∂agib + ∂bgai − ∂igab) and

Rab = ∂iΓ
i
ab − ∂aΓi

ib + Γi
acΓ

i
ij − Γi

ajΓ
j
ib.

In addition, equation (4) is used to define kab algebraically and, in this context,
also intrinsically to M .

Having the formal series for the geometric quantities at hand, algebraic rep-
resentations of the components of the energy momentum tensor can be found.
For this, let ξ, µ,Λ ∈ R be arbitrary values for the coupling constant, field mass
and cosmological constant respectively and assume H > 0. A formal scalar field
φ ∈ L of order higher than zero and a smooth self interaction potential shall
be given such that V (0) = Λ and V ′(0) = µ2/2, i.e. the first two coefficients
of the McLaurin expansion may be denominated explicitly. A formal equivalent
of V (φ∗φ) is naturally obtained by applying the substitution homomorphism
induced by φ∗φ to the McLaurin expansion of V , hence setting

W :=

∞
∑

n=0

1

n!
(∂nV )(0)(φ∗φ)n

which is well-defined because of φ∗φ = o(1) and so the sum is point-wise finite.
Substitution into the expansion of V ′ shall yield W ′ in the same manner. Also
due to φ∗φ = o(1), the element 1− ξφ∗φ has a multiplicative inverse in L which
is exactly of order zero. Now the components of the effective energy momentum
tensor (15), (16) and (17), the evolution and constraint quantities (11), (12),
(13) and (14) as well as the scalar field equation (9) make sense in terms of
formal series and therefore lead to the following definition 1. It is convenient to
introduce the abbreviations

K :=
[

n2/4 − ξn(n + 1)
]

H2

k1 :=

{

n/2 for µ2 > K

n/2 −
√

K − µ2/H for µ2 ≤ K

k2 :=

{

n/2 for µ2 > K

n/2 +
√

K − µ2/H for µ2 ≤ K

here.

Definition 1. Let (gab) be a real symmetric family in SuX−v for some u >
0, v ∈ R, with (gab)−v,0,0 a Riemannian metric and φ ∈ L of order greater
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than zero. Then the pair (gab, φ) is said to be a solution of the (algebraic)
Einstein or scalar field equations at relative order m ∈ R iff the evolution and
constraint quantities vanish at m, so (Êa

b, E, C, Ca)(m) = 0, or (9) holds at
m+k1 respectively. It is called a solution of the Einstein or scalar field equations
iff it is a solution of the corresponding equation at every relative order m ∈ R.

Furthermore, the concept of relative orders shall be extended to the metric
and field by defining the coefficients of gab and φ at relative order m to be
gab(m − 2) and φ(m + k1) respectively.

Simple but useful necessary conditions for the existence of algebraic solu-
tions as well as relations of the asymptotic Hubble constant H or the principal
frequency of field oscillations to the cosmological constant Λ or field mass µ,
respectively, can be obtained by focusing attention to the lowest order terms in
the series for both metric and field. Let (gab, φ) be a solution of the Einstein
scalar field equations. Prescribing the metric gab to lie within SnX−2 and have
coefficients (gab)−2,0,0 that make up a Riemannian metric, implies, as mentioned
above, gab ∈ SnX2 which in turn requires the components of the connection Γc

ab

and Ricci tensor Rab being real and in Sn. This in turn leads to Ra
b, R ∈ SnX2

both real, whereas equation (4) identifies kab ∈ SnX−2 real and so either ka
b

and tr k as real elements of Sn. The same equation (4) also determines their
lowest order coefficients entirely,

(ka
b)0,0,0 = −Hδa

b ; (σa
b)0,0,0 = 0 ; (tr k)0,0,0 = −nH. (20)

Further, assume the field φ being in Sk2
and not equal to 0, then the mini-

mum r of the support of φ exists and the scalar field equation (9) at r reads

(l + 1)(l + 2)(φ)r,s,l+2 + (l + 1)(n − 2r − 2is)H(φ)r,s,l+1

+
{

µ2 − s2H2 + [r(r − n) + ξn(n + 1)] H2 + is(2r − n)H2
}

(φ)r,s,l = 0

for all s, l ∈ R. From this, it can be seen that φ is actually an element of
Sk2−k1

Xk1 and that the assertion

φ(r) ∈ C∞(M, C) for µ2 < K

φ(r) ∈ C∞(M, C) + C∞(M, C)Z for µ2 = K

φ(r) ∈ C∞(M, C)Y −ω + C∞(M, C)Y ω for µ2 > K

holds, i.e. for subcritical field masses there are neither logarithmic nor oscil-
latory initial terms, for critical field masses at most one logarithmic but no
oscillatory initial terms and for supercritical field masses no logarithmic but in
general two oscillatory initial terms at frequency ωH present, were

ω :=

{ √

µ2 − K/H for µ2 > K
0 for µ2 ≤ K.

(21)

Using the lowest order coefficients for ka
b known from (20), the scalar field equa-

tion (9) can be written in a form suitable for calculating the field inductively,
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namely for every positive relative order m > 0 in case of subcritical or critical
field masses µ2 ≤ K as

(l + 1)(l + 2)(φ)m+k1,s,l+2 − (l + 1)(2m + k1 − k2 + 2is)H(φ)m+k1,s,l+1

+ (m + is)(m + k1 − k2 + is)H2(φ)m+k1,s,l = LOTm+k1,s,l, (22)

in case of supercritical field masses µ2 > K as

(l + 1)(l + 2)(φ)m+k1,s,l+2 − 2(l + 1)(m + is)H(φ)m+k1,s,l+1

+ (m + is − iω)(m + is + iω)H2(φ)m+k1,s,l = LOTm+k1,s,l, (23)

where in LOTm+k1,s,l only field coefficients of relative order lower than m and
metric coefficients of relative order lower than or equal to m occur.

From the fact that φ is in Sk2−k1
Xk1 it follows that φ∗φ, W and W ′ lie within

Sn, so do the components of the effective energy momentum tensor Sa
b, ja, ρ

and with them, finally, all the evolution and constraint quantities Ea
b, E, C, Ca.

Furthermore, according to the equations (15), (16) and (17),

(Sa
b)0,0,0 = −Λδa

b ; (ja)0,0,0 = 0 ; (ρ)0,0,0 = Λ (24)

is implied, and hence the validity of the Einstein equations to relative order zero
requires in particular Λ > 0 and

H =

√

2Λ

n(n − 1)
. (25)

Their validity up to but not including k0 := min{2, 2k1} yields the vanishing
of gab and hence kab on the open interval ]−2, k0 − 2[ , of gab on the interval
]2, k0 + 2[ , thus of ka

b, Γc
ab and Rab on the interval ]0, k0[ and so of Ra

b on
]2, k0 + 2[ by induction.

Taking the last statement above into account, it is possible to express the
evolution and constraint quantities in a coefficient-wise manner for relative or-
ders m ≥ k0 as

(Êa
b)m,s,l = (n − m − is)H(σa

b)m,s,l + (l + 1)(σa
b)m,s,l+1 − (R̂a

b)m,s,l

−
∑

p+q=m

∑

u+v=s

∑

κ+λ=l

(σa
b)p,u,κ(tr k)q,v,λ + (Ŝa

b)m,s,l (26)

(E)m,s,l = (2n − m − is)H(tr k)m,s,l + (l + 1)(tr k)m,s,l+1 − (R)m,s,l

−
∑

p+q=m

∑

u+v=s

∑

κ+λ=l

(tr k)p,u,κ(tr k)q,v,λ

− [(tr S)m,s,l + n(ρ)m,s,l] /(n − 1) (27)

(C)m,s,l = −(2n− 2)H(tr k)m,s,l + (R)m,s,l − 2(ρ)m,s,l

+
∑

p+q=m

∑

u+v=s

∑

κ+λ=l

[

− (ki
j)p,u,κ(kj

i)q,v,λ

+ (tr k)p,u,κ(tr k)q,v,λ

]

(28)
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(Ca)m,s,l = ∇0
i(k

i
a)m,s,l −∇0

a(tr k)m,s,l − (ja)m,s,l

−
∑

p+q=m

∑

u+v=s

∑

κ+λ=l

[

(Γi
aj)p,u,κ(kj

i)q,v,λ

− (Γi
ij)p,u,κ(kj

a)q,v,λ

]

, (29)

where the indices p and q are never less than k0 and ∇0 denotes the Levi-Civita
connection induced on M by the Riemannian metric (gab)−2,0,0. For the same
relative orders, equation (4) reads

(m + is)H(gab)m−2,s,l − (l + 1)(gab)m−2,s,l+1 =

2(gai)−2,0,0(k
i
b)m,s,l + 2

∑

p+q=m

∑

u+v=s

∑

κ+λ=l

(gai)p−2,u,κ(ki
b)q,v,λ. (30)

Assuming validity of the Einstein scalar field equations up to but not in-
cluding relative order m ≥ k0, the consistency conditions (18) and (19) simplify
to

(2n − m − is)H(C)m,s,l + (l + 1)(C)m,s,l+1 = −2(n − 1)H(E)m,s,l (31)

and

(n − m − is)H(Ca)m,s,l + (l + 1)(Ca)m,s,l+1 =

−1

2
∇a(C)m,s,l + ∇0

i(Ê
i
a)m,s,l −

(

1 − 1

n

)

∇a(E)m,s,l. (32)

5 Construction of the solution

Using the relations for the coefficients of metric and scalar field derived in the
previous section, existence and uniqueness of algebraic solutions of the Einstein
scalar field equations can be shown by (transfinite) induction. After making
some considerations about the support of the required formal series, initial so-
lutions are constructed up to relative order n, exclusive, which by themselves
will allow stating a necessary and sufficient condition for the existence of solu-
tions up to beyond relative order n. For this, let a coupling constant ξ ∈ R, a
cosmological constant Λ > 0, a field mass µ ∈ R and a smooth real valued self
interaction potential V , defined on an interval containing zero, with V (0) = Λ,
V ′(0) = µ2/2 be given, define H and ω by (25) and (21) respectively and assume
µ2 > −ξn(n+1)H2. The condition on the field mass ensures that k1 is positive
and therefore the constructed field will be of order greater than zero.

Let D be the smallest +-stable discrete non-negative set containing 0, 1, k1

and k2−k1, where +-stable means the set is invariant under point-wise addition,
i.e. D + D = D. For arbitrary gab and φ both in L suppose (gab)−2,0,0 to be a
Riemannian metric, the support of gab to be contained in D−2 and that of φ to
be contained in D+k1. Then, the support of kab is a subset of D−2, the support
of gab one of D+2 and so the supports of all the terms in the components of the

10



effective energy momentum tensor (8), in the evolution and constraint quantities
(11), (12), (13), (14) and hence of those quantities themselves lie within D. The
same is true for the left hand side of the scalar field equation (9). This means
that it suffices to verify the validity of the Einstein scalar field equations on the
set D. Since D is well-ordered by the induced order of R, transfinite induction
is available immediately. Of course, because D is at most countable, ordinary
induction could also be used after identifying D with its isomorphic ordinal.

As mentioned above, existence and uniqueness of initial solutions will now
be proved. More precisely:

Lemma 2. Let Aab ∈ C∞(M) be the components of a Riemannian metric and
φ0, φ1 ∈ C∞(M, C) smooth complex valued functions on M . Then there exists a
solution (gab, φ) of the Einstein scalar field equations up to relative order n ≥ 2,
exclusive, with gab ∈ SnX−2, φ ∈ Sk2−k1

Xk1 such that

(G1) gab(−2) = Aab

(P1) φ(k1) =







φ0 for µ2 < K
φ0 + φ1Z for µ2 = K
φ0Y

−ω + φ1Y
ω for µ2 > K

(P2) φ(k2) ∈ φ1 + C∞(M, C)Z for µ2 < K

are valid. The solution is unique up to, but not including, relative order n.

Proof. The construction is done by induction over relative orders in the set D∩
]−∞, n[ using the following argument: For a 0 ≤ m < n let gab : ]−∞, m − 2[ →
C∞(M) and φ : ]−∞, m + k1[ → C∞(M, C)[Z]〈Y 〉 be constructed such that
(gab) is symmetric, the Einstein scalar field equations are satisfied up to relative
order m, exclusive, and that for positive m the conditions (G1), (P1), for m +
k1 > k2 additionally (P2), hold. Moreover, the support of gab may be finite,
having exactly the point −2 lying below k0 − 2, the support of φ be finite as
well, having no points lying below k1. Finally, for all t less than both m+k1 and
k2, φ(t) may belong to the subalgebra C∞(M, C). Then the maps are extended
to relative order m dependent on the value of m:

m = 0 : Set gab(−2) := Aab, φ(k1) := φ0 for µ2 > K, φ(k1) := φ0 + φ1Z for
µ2 = K and φ(k1) := φ0Y

−ω + φ1Y
ω for µ2 > K, then (G1) and (P1) are

satisfied, the Einstein equations hold at relative order 0 due to the choice
of H , the scalar field equation holds there due to the choices of ω and k1.

0 < m < k0 : Setting gab(m − 2) := 0 fulfills the Einstein equations at relative
order m because k0 is less than or equal to both 2k1 and 2. If µ2 > K
or µ2 ≤ K and m + k1 6= k2, the relations (23) or (22) yield a φ(m +
k1) in C∞(M, C)[Z]〈Y 〉 such that the scalar field equation is satisfied at
relative order m. (The occurring linear systems can, for example, be solved
successively by starting at sufficiently large values of l and descending
towards zero.) For m+ k1 < k2 φ(m + k1) actually lies within C∞(M, C).
If, on the other hand, µ2 ≤ K and m+ k1 = k2, then relation (22) implies

11



the existence of a χ ∈ C∞(M, C) such that the scalar field equation is
solved at relative order m by setting φ(m + k1) := φ0 + χZ. This, in
particular, suffices (P2).

k0 ≤ m < n : Using equations (26), (27) and (30), gab(m − 2) ∈ C∞(M) are
found such that (gab) is symmetric and cancels the evolution quantities
Êa

b(m) and E(m) at relative order m. Now the consistency condition (31)
shows that the Hamiltonian constraint quantity C(m) at relative order
m vanishes and (32) subsequently implies the same for the momentum
constraint quantities Ca(m). Thus, the Einstein equations are solved at
relative order m. The extension of φ can be carried out exactly as in the
previous case: If µ2 > K or µ2 ≤ K and m + k1 6= k2, the relations (23)
or (22) yield a φ(m + k1) in C∞(M, C)[Z]〈Y 〉 such that the scalar field
equation is satisfied at relative order m. For m+k1 < k2 φ(m+k1) actually
lies within C∞(M, C). If, on the other hand, µ2 ≤ K and m+k1 = k2, then
relation (22) implies the existence of a χ ∈ C∞(M, C) such that the scalar
field equation is solved at relative order m by setting φ(m+k1) := φ0+χZ.
This, in particular, suffices (P2).

Uniqueness up to but not including relative order n follows with the same argu-
ment by taking advantage of the necessary conditions derived in section 4.

The condition for the existence of a solution of the algebraic Einstein scalar
field equations is stated by means of a scalar ζ and a 1-form Zb. For defining
those, assume Aab being a Riemannian metric and φ0, φ1 smooth complex valued
functions on M . By virtue of Lemma 2 and equations (26), (27), (30) there exists
a solution (gab, φ) of the Einstein scalar field equations up to relative order n,
exclusive, with (G1), (P1), (P2) valid and such that the coefficients (Êa

b)n,0,l

and (E)n,0,l+1 of the evolution quantities vanish too for all natural l. It can
then be shown that the right hand sides of

ζ(A, φ0, φ1) := Aij(gij)n−2,0,0 −
2

n2H2
(E)n,0,0 (33)

Zb(A, φ0, φ1) := ∇0i
(gib)n−2,0,0 −

2

n2H2

(

∇0
b(E)n,0,0 + nH(Cb)n,0,0

)

(34)

are independent of the choice of such a solution (gab, φ) and therefore the
functions ζ and Zb are well-defined. Now the necessary part of the condi-
tion is obvious: If (gab, φ) is a solution of the Einstein scalar field equations
for which (G1), (P1) and (P2) holds, then Aij(gij)n−2,0,0 = ζ(A, φ0, φ1) and

∇0i
(gib)n−2,0,0 = Zb(A, φ0, φ1). The sufficient part is contained in the next

theorem.

Theorem 3. Let Aab ∈ C∞(M) be the components of a Riemannian metric,
Bab ∈ C∞(M) those of a symmetric tensor and φ0, φ1 ∈ C∞(M, C) smooth
complex valued functions on M with

AijBij = ζ(A, φ0, φ1) and ∇0i
Bib = Zb(A, φ0, φ1).

12



Then there exists exactly one solution (gab, φ) of the Einstein scalar field equa-
tions with gab ∈ SnX−2, φ ∈ Sk2−k1

Xk1 and such that

(G1) (gab)−2,0,0 = Aab

(G2) (gab)n−2,0,0 = Bab

(P1) φ(k1) =







φ0 for µ2 < K
φ0 + φ1Z for µ2 = K
φ0Y

−ω + φ1Y
ω for µ2 > K

(P2) φ(k2) ∈ φ1 + C∞(M, C)Z for µ2 < K

are valid altogether.

Proof. The assertion is proved by induction over relative orders in D. By virtue
of Lemma 2 it suffices to consider relative orders greater than or equal to n. So,
for a m ≥ n let gab : ]−∞, m − 2[ → C∞(M)[Z]〈Y 〉 and φ : ]−∞, m + k1[ →
C∞(M, C)[Z]〈Y 〉 be constructed such that (gab) is real symmetric, the Einstein
scalar field equations are satisfied up to relative order m, exclusive, and the
conditions (G1), (P1), (P2), and for m > n also (G2) hold. Moreover, the
support of gab may be finite, having exactly the point −2 lying below k0 − 2,
the support of φ be finite as well, having no points lying below k1. Finally, for
all t less than n − 2, gab(t) may belong to C∞(M), as for t < k2, φ(t) may be
within the subalgebra C∞(M, C). Then the metric is extended to relative order
m as follows:

m = n : The equations (26), (27) together with (30) ensure the existence of real
gab(n − 2) ∈ C∞(M, C)[Z]〈Y 〉 with (gab)n−2,0,0 = Bab such that (gab) is

symmetric and causes Êa
b = 0 and E(n) ∈ C∞(M, C), i.e. all but the

coefficient (E)n,0,0 necessarily vanish. Due to the trace condition implied
on B, this coefficient turns out to be zero too, so E(n) = 0 and by consis-
tency equation (31) C(n) = 0 is obtained. In the same manner, relation
(32) firstly implies Ca(n) ∈ C∞(M, C) and the divergence condition on B
then guarantees that Ca(n) actually vanishes. So, the Einstein equations
are satisfied at relative order n.

m = 2n : In this case, the relations (26), (28) and (30) give a real symmetric
family of gab(m−2) ∈ C∞(M, C)[Z]〈Y 〉 so that Êa

b(m) = 0 and C(m) = 0
are fulfilled. The consistency conditions (31) and (32) then show E(m) = 0
and Ca(m) = 0 successively and so the validity of the Einstein equations
at relative order m.

m /∈ {n, 2n} : Here, the relations (26), (27) and (30) yield a real symmetric
family of gab(m−2) ∈ C∞(M, C)[Z]〈Y 〉 such that Êa

b(m) = 0 and E(m) =
0 are satisfied. Once again, the consistency conditions (31) and (32) are
used to show C(m) = 0 and Ca(m) = 0 successively and so the validity of
the Einstein equations at relative order m.

The continuation of the scalar field can, in any case, be done using the relations
(22) and (23), respectively, to provide a coefficient φ(m+k1) ∈ C∞(M, C)[Z]〈Y 〉
such that the scalar field equation holds at relative order m too.
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The uniqueness of such a solution follows with the same inductive argument
from the presuppositions of the theorem by making use of the uniqueness of the
initial solution as stated in Lemma 2.

It is worth noting that for non-subcritical field masses the supports of the
series become especially simple because then k1 = k2 = n/2 and so the set D
consists of natural or halves of natural numbers only, depending on whether n
is even or odd, respectively. Oscillatory terms by their part occur exclusively
at integer multiples of ω. If the field mass is not supercritical, there are no
oscillatory terms at all.

The restriction to masses µ2 > −ξn(n + 1)H2 and thus to fields of order
greater than zero is stringent for the treatment outlined in this section since just
by allowing equality the right hand side of (25) becomes, in general, dependent
on the field and so the Einstein equations cannot necessarily be satisfied to
relative order zero with a constant H .

6 Discussion

In this paper, existence and uniqueness of formal power series solutions for com-
plex scalar field models with arbitrary coupling to the scalar curvature is proven
for a large class of self interaction potentials. The class includes potentials which,
written as a function of the absolute field amplitude, possess a positive mini-
mum at zero. The algebraic analogues of the Einstein scalar field equations
were obtained by considering the model in n + 1 decomposition with respect
to Gaussian coordinates and postulating those relations to hold on a suitable
algebra of formal series endowed with all the necessary operations. This yielded
algebraic equations for the series’ coefficients which could be solved inductively.
The series used here are generalizations of those introduced by Rendall [21] for
a similar treatment of the vacuum case and perfect fluid models since, apart
from oscillatory terms, both logarithmic terms as well as non-integer powers of
the exponential factor e−Ht may occur.

The lower mass limit that is imposed in the case of non-positive coupling
constants can be interpreted as a condition for the field to decay exponentially
in the future. For a more specific classification of the asymptotics, a critical field
mass

√
K =

√

n2/4 − ξn(n + 1)H is found that distinguishes solutions based
on the occurrence of logarithmic or oscillatory terms in the leading order k1

of the field’s expansion. For subcritical masses, µ2 < K, neither logarithmic
nor oscillatory terms are present in leading order, whereas for critical masses
µ2 = K, the lowest logarithmic term can appear already initially. Both corre-
spond to fields that would fall off exponentially with increasing time and this
asymptotically at least like e−k1Ht in the former, at least like e−βHt for all β less
than k1 in the latter case. Thereby, the exponent k1 increases from arbitrary
small positive values for the lowest permitted masses to n/2 for the critical field
mass. Supercritical masses on the other hand allow oscillatory terms in the
series to show up, at frequency ±ωH = ±

√

µ2 − K in leading order k1 = n/2
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and together with overtones thereof in higher orders. This has an interpretation
as a field that could oscillate asymptotically at frequency ωH and whose am-
plitude would decay at least like e−nHt/2 for large times. The higher frequency
oscillations would be attenuated exponentially with respect to the amplitude of
the first harmonic.

It should be emphasized that the connection between certain coefficients
in the formal series and the asymptotics of a scalar field as made above is
just a prospect of the large time behaviour the solutions might be expected
to show. There is no assertion that the series would in fact be asymptotic
in the sense of theorem 5 of [21], or even convergent, when t is considered a
time coordinate as in section 2. Drawing this analogy nonetheless, the results
obtained here are found to coincide with the asymptotics of scalar field models
derived analytically by Rendall [22, 23]. In particular, the expression for the late
time limit of the Hubble parameter (25) or the asymptotic value −nH for the
trace of the second fundamental form are identical. Additionally, the condition
on the second derivative of the potential necessary for an oscillating decay of
the field agrees with µ2 > K. It might also be interesting that recent SN Ia data
suggests, although not by itself significantly enough to rule out even ΛCDM,
the existence of oscillations in the cosmological scale factor [17, 18]. In [17],
Lazkoz et al. achieved their best fit with a purely empirical oscillatory model.
The observed decay of the oscillation’s amplitude with the third power of the
scale factor is compatible with the first possible occurrence of oscillatory terms
in the expansion of the metric found here.

Part of this work was done in the course of a diploma thesis written at the
University of Berne, Switzerland, supervised by Prof. Dr. P. Háj́ıček, in 2004.
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